Skip to main content

Process of Research






Step 1: Identify the Problem
The first step in the process is to identify a problem or develop a research question. The research problem may be something the agency identifies as a problem, some knowledge or information that is needed by the agency, or the desire to identify a recreation trend nationally. In the example in table 2.4, the problem that the agency has identified is childhood obesity, which is a local problem and concern within the community. This serves as the focus of the study.

http://www.humankinetics.com/AfcIcon/Icons/Blank.gif
Step 2: Review the Literature
Now that the problem has been identified, the researcher must learn more about the topic under investigation. To do this, the researcher must review the literature related to the research problem. This step provides foundational knowledge about the problem area. The review of literature also educates the researcher about what studies have been conducted in the past, how these studies were conducted, and the conclusions in the problem area. In the obesity study, the review of literature enables the programmer to discover horrifying statistics related to the long-term effects of childhood obesity in terms of health issues, death rates, and projected medical costs. In addition, the programmer finds several articles and information from the Centers for Disease Control and Prevention that describe the benefits of walking 10,000 steps a day. The information discovered during this step helps the programmer fully understand the magnitude of the problem, recognize the future consequences of obesity, and identify a strategy to combat obesity (i.e., walking).

Step 3: Clarify the Problem
Many times the initial problem identified in the first step of the process is too large or broad in scope. In step 3 of the process, the researcher clarifies the problem and narrows the scope of the study. This can only be done after the literature has been reviewed. The knowledge gained through the review of literature guides the researcher in clarifying and narrowing the research project. In the example, the programmer has identified childhood obesity as the problem and the purpose of the study. This topic is very broad and could be studied based on genetics, family environment, diet, exercise, self-confidence, leisure activities, or health issues. All of these areas cannot be investigated in a single study; therefore, the problem and purpose of the study must be more clearly defined. The programmer has decided that the purpose of the study is to determine if walking 10,000 steps a day for three days a week will improve the individual’s health. This purpose is more narrowly focused and researchable than the original problem.

Step 4: Clearly Define Terms and Concepts
Terms and concepts are words or phrases used in the purpose statement of the study or the description of the study. These items need to be specifically defined as they apply to the study. Terms or concepts often have different definitions depending on who is reading the study. To minimize confusion about what the terms and phrases mean, the researcher must specifically define them for the study. In the obesity study, the concept of “individual’s health” can be defined in hundreds of ways, such as physical, mental, emotional, or spiritual health. For this study, the individual’s health is defined as physical health. The concept of physical health may also be defined and measured in many ways. In this case, the programmer decides to more narrowly define “individual health” to refer to the areas of weight, percentage of body fat, and cholesterol. By defining the terms or concepts more narrowly, the scope of the study is more manageable for the programmer, making it easier to collect the necessary data for the study. This also makes the concepts more understandable to the reader.

Step 5: Define the Population
Research projects can focus on a specific group of people, facilities, park development, employee evaluations, programs, financial status, marketing efforts, or the integration of technology into the operations. For example, if a researcher wants to examine a specific group of people in the community, the study could examine a specific age group, males or females, people living in a specific geographic area, or a specific ethnic group. Literally thousands of options are available to the researcher to specifically identify the group to study. The research problem and the purpose of the study assist the researcher in identifying the group to involve in the study. In research terms, the group to involve in the study is always called the population. Defining the population assists the researcher in several ways. First, it narrows the scope of the study from a very large population to one that is manageable. Second, the population identifies the group that the researcher’s efforts will be focused on within the study. This helps ensure that the researcher stays on the right path during the study. Finally, by defining the population, the researcher identifies the group that the results will apply to at the conclusion of the study. In the example in table 2.4, the programmer has identified the population of the study as children ages 10 to 12 years. This narrower population makes the study more manageable in terms of time and resources.

Step 6: Develop the Instrumentation Plan
The plan for the study is referred to as the instrumentation plan. The instrumentation plan serves as the road map for the entire study, specifying who will participate in the study; how, when, and where data will be collected; and the content of the program. This plan is composed of numerous decisions and considerations that are addressed in chapter 8 of this text. In the obesity study, the researcher has decided to have the children participate in a walking program for six months. The group of participants is called the sample, which is a smaller group selected from the population specified for the study. The study cannot possibly include every 10- to 12-year-old child in the community, so a smaller group is used to represent the population. The researcher develops the plan for the walking program, indicating what data will be collected, when and how the data will be collected, who will collect the data, and how the data will be analyzed. The instrumentation plan specifies all the steps that must be completed for the study. This ensures that the programmer has carefully thought through all these decisions and that she provides a step-by-step plan to be followed in the study.

Step 7: Collect Data
Once the instrumentation plan is completed, the actual study begins with the collection of data. The collection of data is a critical step in providing the information needed to answer the research question. Every study includes the collection of some type of data—whether it is from the literature or from subjects—to answer the research question. Data can be collected in the form of words on a survey, with a questionnaire, through observations, or from the literature. In the obesity study, the programmers will be collecting data on the defined variables: weight, percentage of body fat, cholesterol levels, and the number of days the person walked a total of 10,000 steps during the class.
The researcher collects these data at the first session and at the last session of the program. These two sets of data are necessary to determine the effect of the walking program on weight, body fat, and cholesterol level. Once the data are collected on the variables, the researcher is ready to move to the final step of the process, which is the data analysis.

Step 8: Analyze the Data
All the time, effort, and resources dedicated to steps 1 through 7 of the research process culminate in this final step. The researcher finally has data to analyze so that the research question can be answered. In the instrumentation plan, the researcher specified how the data will be analyzed. The researcher now analyzes the data according to the plan. The results of this analysis are then reviewed and summarized in a manner directly related to the research questions. In the obesity study, the researcher compares the measurements of weight, percentage of body fat, and cholesterol that were taken at the first meeting of the subjects to the measurements of the same variables at the final program session. These two sets of data will be analyzed to determine if there was a difference between the first measurement and the second measurement for each individual in the program. Then, the data will be analyzed to determine if the differences are statistically significant. If the differences are statistically significant, the study validates the theory that was the focus of the study. The results of the study also provide valuable information about one strategy to combat childhood obesity in the community.
As you have probably concluded, conducting studies using the eight steps of the scientific research process requires you to dedicate time and effort to the planning process. You cannot conduct a study using the scientific research process when time is limited or the study is done at the last minute. Researchers who do this conduct studies that result in either false conclusions or conclusions that are not of any value to the organization.

Comments

Popular posts from this blog

Henry Fayol's Principles of Management

Henry Fayol's Principles of Management 1.       Division of Work According to Henry Fayol under division of work, "The worker always on the same post, the manager always concerned with the same matters, acquire an ability, sureness and accuracy which increases their output. In other words, division of work means specialization. According to this principle, a person is not capable of doing all types of work. Each job and work should be assigned to the specialist of his job. Division of work promotes efficiency because it permits an organizational member to work in a limited area reducing the scope of his responsibility. Fayol wanted the division of work not only at factory but at management levels also. Example:   Wal-Mart   is so huge, it has unprecedented power to shape   labor   divisions     2.       Authority and Responsibility Authority and responsibility go together...

JRD Tata

Early Life: J. R. D. Tata was born in Paris, France, the second child of Parsi father Ratanji Dadabhoy Tata and his French wife, Suzanne " Sooni " Brière . His father was a first cousin of Jamsetji Tata, a pioneer industrialist in India. As his mother was French, he spent much of his childhood in France and as a result, French was his first language. Tata also attended the French Foreign Legion. He attended the Cathedral and John Connon School, Bombay( now Mumbai). J. R. D. Tata was inspired early by aviation pioneer Louis Blériot , and took to flying. On February 10, 1929 Tata obtained the first pilot licence issued in India. He later came to be known as the father of Indian civil aviation. He founded India's first commercial airline, Tata Airlines in 1932, which became Air India in 1946, now India's national airline. He joined Tata & Sons as an unpaid apprentice in 1925. In 1938, at the age of 34, JRD was elected Chairman of Tata &...

Theories of Population

Malthusian Theory of Population   Thomas Robert Malthus was the first economist to propose a systematic theory of population.  He articulated his views regarding population in his famous book,  Essay on the Principle of Population  (1798), for which he collected empirical data to support his thesis. Malthus had the second edition of his book published in 1803, in which he modified some of his views from the first edition, but essentially his original thesis did not change. In  Essay on the Principle of Population, Malthus proposes the principle that human populations grow exponentially (i.e., doubling with each cycle) while food production grows at an arithmetic rate (i.e. by the repeated addition of a uniform increment in each uniform interval of time). Thus, while food output was likely to increase in a series of twenty-five year intervals in the arithmetic progression 1, 2, 3, 4, 5, 6, 7, 8, 9, and so on, population was capable of increasing in...